
Work Journal

For my self-directed learning part I have decided to provide my writeups to some forensics
challenges for ​picoCTF’18​​ in Work Journal format along with reflections.

However respecting the ​“Quality over Quantity”​ ​recommendation, I decided to only include the
Top ​3​​ writeups ​(which I learnt the most from)​ even though I completed all of the forensics challenges.

Job #: z5087077_P1C0CTF18_001
Form
Commenced By:

Ka Wing Ho Date Commenced: 2018/10/25

Journal Type: Evidence Acquisition

Time
(24HR)

Journal Notes, Screenshots, Attachments

22:45

LoadSomeBits: ​​(Link to image)

The challenge name acronym is LSB which hints very strongly at Least Significant Bit,
which is a steganography method where the LSB of each byte in an image is altered to
contain a message which can then be extracted by reversing the process

One mistake most people make is they include the header of the image which should
not be included, so in my script later I will skip past the header bytes

I tried using the ​zsteg ​ tool on the image but apparently bitmap files were not
supported, therefore I decided to write my own script to do it

In the hexdump below you can see there are a lot of 1 and 0 bits followed by a
seemingly endless chunk of NULL bytes:

https://ctftime.org/event/681
https://2018shell1.picoctf.com/static/add26913a57edadb9ebeaa88cef670bc/pico2018-special-logo.bmp
https://github.com/zed-0xff/zsteg

Work Journal

22:47 Either using ​dd​ or by hand, strip away the headers in the file:

I decided to make a quick Python script for future-proofing as well as easy proof of
concept

23:30 The completed ​script​ functions like this:

1) It opens the file ​pico2018-special-logo.bmp​ and reads bytes from it
2) It then gets the skips 54 bytes and reads til the 592nd byte

(no point reading too long since it's all zeroes anyways)

3) Then for each byte in the truncated stream of bytes:
a) convert each byte into 8 bits
b) grab the lsb and add it to a result string

4) Then the resultant bit string is converted back into bytes
5) The bytes are then converted back into ascii

The script was built it in a way where simply adjusting the byte offset in (2) quickly
allowed me to find the flag (initially it was 14 instead of 52)

23:53 The flag was then obtained by running the script:

picoCTF{st0r3d_iN_tH3_l345t_s1gn1f1c4nT_b1t5_882756901}

Reflectio
n

● I think this challenge was quite satisfying because it would be hard if you are
not comfortable with the concepts of bits and bytes and converting between
the two (as well as ascii characters)

● I also learnt how to manipulate bits better in Python now
● Overall it took me about just over an hour to debug and make the script
● I found it interesting how this challenge was worth more (550) points than

the other two below (200-300) but I spent considerably way less time on this
one !

https://ghostbin.com/paste/wxaxd

Work Journal

Job #: z5087077_P1C0CTF18_002
Form
Commenced By:

Ka Wing Ho Date Commenced: 2018/10/25

Journal Type: Evidence Acquisition

Time
(24HR)

Journal Notes, Screenshots, Attachments

23:53

Ext. Super Magic: ​​(Link to raw image)

The challenge flavour text hinted that the image was broken somehow and needed
repairing before the flag could be retrieved (the flag is in the form of a jpg file as
shown below), this is apparent when trying to mount the image

$ file ext-super-magic.img
ext-super-magic.img: data

$ strings ext-super-magic.img | grep flag
flag.jpg

$ sudo mkdir /mnt/magic
$ sudo mount ext-super-magic.img /mnt/magic
mount: wrong fs type, bad option, ​bad superblock​ on /dev/loop0,
 missing codepage or helper program, or other error

 In some cases useful info is found in syslog - try
 dmesg | tail or so.

Running ​xxd​ shows that there are many many images, but most likely red herrings:

https://2018shell1.picoctf.com/static/9f563e291d847c30879277c3b6c16260/ext-super-magic.img

Work Journal

26/10
00:36

Tried using ​foremost​ to extract the images out, but the flag image was not in the
directory of extracted images:

$ foremost ext-super-magic.img
Processing: ext-super-magic.img
|*|
$ cd output/jpg/
$ ls
00001026.jpg 00002506.jpg 00002964.jpg
00003232.jpg 00003704.jpg 00004106.jpg
00005328.jpg 00002066.jpg 00002538.jpg
00003026.jpg 00003280.jpg 00003740.jpg
00004198.jpg 00008194.jpg 00002140.jpg
00002602.jpg 00003092.jpg 00003288.jpg
00003808.jpg 00004356.jpg 00008564.jpg
00002206.jpg 00002672.jpg 00003110.jpg
00003386.jpg 00003834.jpg 00004470.jpg
00008886.jpg 00002412.jpg 00002752.jpg
00003148.jpg 00003472.jpg 00003980.jpg
00004740.jpg 00009002.jpg 00002440.jpg
00002940.jpg 00003174.jpg 00003484.jpg
00004052.jpg 00005156.jpg 00009128.jpg
$ for x in *; do feh $x; done

The images all appear corrupted and when closely scrutinized say the message ​“Your
flag is in another file”

As an example:

00:53 The challenge hinted at the ​fsck​ tool so I decided to check it out:

$ e2fsck ext-super-magic.img
e2fsck 1.42.13 (17-May-2015)
ext2fs_open2: Bad magic number in super-block
e2fsck: Superblock invalid, trying backup blocks...
e2fsck: Bad magic number in super-block while trying to open ext-super-magic.img

The superblock could not be read or does not describe a valid ext2/ext3/ext4
filesystem. If the device is valid and it really contains an ext2/ext3/ext4
filesystem (and not swap or ufs or something else), then the superblock
is corrupt, and you might try running e2fsck with an alternate superblock:

e2fsck -b 8193 <device>
 or

e2fsck -b 32768 <device>

Work Journal

Trying with different alternate superblocks as suggested did not change the error
message

At this point my thought process was to try and repair the superblock by finding an
intact copy and replacing the entire block

01:23 I discovered ​lost+found​ in the hexdump earlier, which is usually created at the root
directory after a restoration has been completed.

Ran mke2fs and it seemed to have generated a filesystem on the raw image file itself, I
then mounted it successfully (?) but no files could be found aside from ​lost+found

$ cp ext-super-magic.img test.img
$ mke2fs test.img
mke2fs 1.42.13 (17-May-2015)
Creating filesystem with 5120 1k blocks and 1280 inodes

Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done

$ file test.img
test.img: Linux rev 1.0 ext2 filesystem data,
UUID=9d3df05f-5175-4954-b854-7756881d6552 (large files)

$ e2fsck test.img
e2fsck 1.42.13 (17-May-2015)
test.img: clean, 11/1280 files, 198/5120 blocks

However I don’t think this is the way to solve the challenge so I stopped pursuing this
route

02:00 Paused the investigation

10:59 Resumed the investigation

The ext2 filesystem is most certainly there as fdisk detects the sector size and all:

$ fdisk -l ext-super-magic.img
Disk ext-super-magic.img: 5 MiB, 5242880 bytes, 10240 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

I tried running tools like ​ddrescue​ (it has a interface similar to Photorec which is
pretty neat) but it did nothing useful

11:25 Ran ​fdisk​ and it created a DOS partition table, but this again is modifying the image
even further which we should avoid

I played around with different options but left it at that.

Work Journal

11:49 Reading up the ​documentation​ on ext2fs it seems that there are multiple copies of the
superblock in the block groups, so I plan to use dd to extract and replace the main
superblock at offset 1024 to try and manually repair the superblock

Tried running ​mke2fs -n ext-super-magic.img​ to print out all stored superblocks
but got no result

Tried running ​testdisk​ on the image as well:

$ cp ext-super-magic.ext test.img
$ testdisk test.img
 > Disk test.img - 5242 KB / 5120 KiB
> [EFI GPT] EFI GPT partition map (Mac i386, some x86_64...)
> [Analyse] Analyse current partition structure and search for lost partitions
Disk test.img - 5242 KB / 5120 KiB - CHS 1 255 63
Current partition structure:
 Partition Start End Size in sectors

Bad GPT partition, invalid signature.
Trying alternate GPT
Bad GPT partition, invalid signature.

Also found another command meant to dump out the filesystem information which
didn't help much:

$ dumpe2fs test.img
dumpe2fs 1.42.13 (17-May-2015)
dumpe2fs: Bad magic number in super-block while trying to open test.img
Couldn't find valid filesystem superblock.

12:30 According to this ​link​, the magic bytes of EXT2 should be ​0xEF53
The documentation also shows that the magic bytes are at offset 1024 bytes from the
start of the file, however closer inspection shows that the magic bytes themselves are
56 bytes offset from the start of the superblock which means the the magic bytes are
at offset 1080 (or 0x438 in hex)from the start of the file

This is what that looks like in the hexdump:

So I will try to fix these two bytes back to be 0xEF53

http://www.nongnu.org/ext2-doc/ext2.html
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node97.html

Work Journal

13:00 Using ​hexedit ​ , I edited the two bytes at offset 438 to be ​53 EF​​ (little endian) and
then saved the file

$ hexedit ext-super-magic.img
<Press Enter to search for new position and Type in ​438​​>
<Selection now jumps to 0x438, now type in ​53 EF​​>
<It should look like this: >
00000438 ​53 EF​​ 01 00 01 00 00 00 DE DA AD 5B 00 00 00 00 00 00 00 00 S..........[........

<Then hit ​CTRL+X​​ to save>

Now running file on the image shows the correct magic filetype !

$ file ext-super-magic.img
ext-super-magic.img: Linux rev 1.0 ext2 filesystem data,
UUID=9e37643d-fdbe-43de-85a2-2711a811c0d9 (large files)

Now mounting the image is successful

$ sudo mount ext-super-magic.img /mnt/magic
$ cd /mnt/magic && ls
-- snipped--
filler-172.jpg filler-248.jpg filler-323.jpg filler-39.jpg filler-475.jpg ​flag.jpg
filler-173.jpg filler-249.jpg filler-324.jpg filler-3.jpg filler-476.jpg lost+found
filler-174.jpg filler-24.jpg filler-325.jpg filler-400.jpg filler-477.jpg
filler-175.jpg filler-250.jpg filler-326.jpg filler-401.jpg filler-478.jpg

The flag is now visible, opening it shows the flag in a really cool ​image​:

Thus the flag is:

picoCTF{ab0CD63BC762514ea2f4fc9eDEC8cb1E}

Reflectio
n

● This challenge was quite hard for me because I kept getting muddled up
between choosing which ways I wanted to approach the challenge

● I tried a whole bunch of different methods but the actual solution was much
easier than I imagined

● This challenge took me about 4-5 hours to solve
● This challenge also taught me more about filesystem repairing/destroying

tools such as fsck and mkefs
● It's kind of scary but also funny how a corruption of two bytes (magic header

in this case) can cause the whole file to be unusable/ unmountable
● It also taught me that tools can only make your life easier but not all the time,

in this case the tools were useless because they were crippled by not being
able to detect the magic bytes, in this case that as a hint that the magic bytes
needed repairing but I didn't catch on until much later

https://vgy.me/hxd4dF.png

Work Journal

Job #: z5087077_P1C0CTF18_003
Form
Commenced By:

Ka Wing Ho Date Commenced: 2018/10/26

Journal Type: Evidence Acquisition

Time
(24HR)

Journal Notes, Screenshots, Attachments

12:30

core: ​​(Link to binary)​​ ​​(Link to core file)

This challenge was about finding the flag that was supposedly loaded into memory but
the program was interrupted before the flag could be printed. This somewhat
crosses-over slightly into Reversing territory but was interesting nonetheless.

The two files are as follows:

$ file print_flag
print_flag: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically
linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32,
BuildID[sha1]=87da2b5b238201d6e071e3189ddef79979bbc723, not stripped

$ file core
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from
'/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag'

Tried ​strings​ and found some information:

$ strings core | grep pico
your flag is: picoCTF{%s}
your flag is: picoCTF{%s}
SUDO_COMMAND=/usr/local/bin/shell_manager deploy -r -n 5 -b pico2018

$ strings core | grep flag
print_flag
/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag
/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag
/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag
/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag
./flag
Failed to open flag file, exiting
Failed to read entire_flag, exiting
your flag is: picoCTF{%s}
./flag
Failed to open flag file, exiting
Failed to read entire_flag, exiting
your flag is: picoCTF{%s}
/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag
/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag

So there appears to be some flag file that the flag is read from before being read into
memory

https://2018shell1.picoctf.com/static/97288b1a4efab71b104a07985704da10/print_flag
https://2018shell1.picoctf.com/static/97288b1a4efab71b104a07985704da10/core

Work Journal

12:45 Loading the binary into GDB as well as the core file shows some more clues in the
disassembly:

$ gdb -c core print_flag
Reading symbols from print_flag...done.
[New LWP 59747]
Core was generated by
`/opt/hacksports/staging/core_3_928148685553025/problem_files/print_flag'.
Program terminated with signal SIGTRAP, Trace/breakpoint trap.
#0 print_flag () at ./print_flag.c:90
90 ./print_flag.c: No such file or directory.

gdb-peda$ disas print_flag
Dump of assembler code for function print_flag:
=>​​ 0x080487c1 <+0>: push ebp ​ (Execution has stopped here)
 0x080487c2 <+1>: mov ebp,esp
 0x080487c4 <+3>: sub esp,0x18
 0x080487c7 <+6>: mov DWORD PTR [ebp-0xc],​0x539
 0x080487ce <+13>: mov eax​,DWORD PTR [ebp-0xc]
 0x080487d1 <+16>: mov eax​,DWORD PTR [​eax*4+0x804a080​]
 0x080487d8 <+23>: sub esp,0x8
 0x080487db <+26>: push ​eax
 0x080487dc <+27>: push 0x804894c
 0x080487e1 <+32>: call 0x8048410 <printf@plt>
 0x080487e6 <+37>: add esp,0x10
 0x080487e9 <+40>: nop
 0x080487ea <+41>: leave
 0x080487eb <+42>: ret
End of assembler dump.

gdb-peda$ info registers
eax 0x270f 0x270f ​​(Actually this value is not important at all)
ecx 0xd1d32a9 0xd1d32a9
edx 0x80b5a60 0x80b5a60
ebx 0x0 0x0
esp 0xffffd65c 0xffffd65c
ebp 0xffffd668 0xffffd668
esi 0xf7fc6000 0xf7fc6000
edi 0xf7fc6000 0xf7fc6000
eip 0x80487c1 0x80487c1 <print_flag>
eflags 0x212 [AF IF]
cs 0x23 0x23
ss 0x2b 0x2b
ds 0x2b 0x2b
es 0x2b 0x2b
fs 0x0 0x0
gs 0x63 0x63
k0 0x0 0x0
k1 0x0 0x0
k2 0x0 0x0
k3 0x0 0x0
k4 0x0 0x0
k5 0x0 0x0
k6 0x0 0x0
k7 0x0 0x0

Work Journal

I tried to do some ​memsearch​ during runtime but nothing useful was found

I noticed that the the value of eax register was ​0x270f ​​before the SIGTRAP, so I tried to
recalculate and obtain the flag

gdb-peda$ p $eax
$7 = 0x270f
gdb-peda$ p $eax*4+0x804a080
$8 = 0x8053cbc
gdb-peda$ x/s $8
0x8053cbc <strs+39996>: "`Z\v\b"

Hmm interesting, there is a strings variable, printing it produces:

gdb-peda$ p strs
$1 = {0x8054008 "2c4bf247ebba0ee3d26980cb3dd1ca9e",
 0x8054030 "6da50ecea79a57d293b237d74a8142fb",
 0x8054058 "f90f8de247cae9c8c8aff7642f561410",
 0x8054080 "e206fe8354d3dab92581df5fea5ff7fd",
 0x80540a8 "9f38dbb2f96c31557d64cc3a6895f928",
 0x80540d0 "85060c8f5eb800d7e3bafe566eb67ee0",
 ….
 }

So it's an array of hash-like strings located in memory that the flag is probably one of
them.

I tried to hex-decode one of them but it appears they are not ascii characters

(Python)
>>> s = "2c4bf247ebba0ee3d26980cb3dd1ca9e"
>>> s.decode('hex')
',K\xf2G\xeb\xba\x0e\xe3\xd2i\x80\xcb=\xd1\xca\x9e'

Getting more curious I decided to inspect other things like using
backtrace​ and ​info locals​:

gdb-peda$ whatis strs
type = char *[10000]
gdb-peda$ info locals
flag_idx = 0x80b5a60
gdb-peda$ x/xs 0x80b5a60
0x80b5a60: "​742100740f1df143e8952f5b4cf32b49​"

gdb-peda$ bt full
#0 print_flag () at ./print_flag.c:90
 flag_idx = 0x80b5a60
#1 0x08048807 in main () at ./print_flag.c:98
No locals.
#2 0xf7e2e637 in __libc_start_main () from /lib32/libc.so.6
No symbol table info available.
#3 0x080484e1 in _start ()
No symbol table info available.

This unfortunately was not the flag...

Work Journal

13:00 I found out that in order to run the program properly the nevironment needed to be
set up such that ​SEED_ENV​​ was not not and there was a ​flag file​​ which contained 32
bytes of information:

$./print_flag
Unable to seed prng, exiting
$ export SEED_ENV='test'

$./print_flag
Failed to open flag file, exiting

$ touch flag
$./print_flag
Failed to read entire_flag, exiting

$ python -c "print 'A'*32" > flag
$./print_flag
your flag is: ​picoCTF{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA}

I was absolutely blown away at what I found because all this time I tried submitting
the hash string itself as the flag without enclosing it in the ​picoCTF{...}

13:30 Another interesting discovery was that the original SEED_ENV
was discovered in the ​corefile​:

$ strings core | g SEED_ENV
SEED_ENV
SEED_ENV
SEED_ENV=0x46b6615f

14:28 FInally solved the challenge , with a bit of reversing knowledge…

Referring back to the disassembly above:

gdb-peda$ disas print_flag
Dump of assembler code for function print_flag:
=>​​ 0x080487c1 <+0>: push ebp ​ (Execution has stopped here)
 0x080487c2 <+1>: mov ebp,esp
 0x080487c4 <+3>: sub esp,0x18
 0x080487c7 <+6>: mov DWORD PTR [ebp-0xc],​0x539
 0x080487ce <+13>: mov eax​,DWORD PTR [ebp-0xc]
 0x080487d1 <+16>: mov eax​,DWORD PTR [​eax*4+0x804a080​]
 0x080487d8 <+23>: sub esp,0x8
 0x080487db <+26>: push ​eax
 0x080487dc <+27>: push 0x804894c
 0x080487e1 <+32>: call 0x8048410 <printf@plt>
 0x080487e6 <+37>: add esp,0x10
 0x080487e9 <+40>: nop
 0x080487ea <+41>: leave
 0x080487eb <+42>: ret
End of assembler dump.

● The value of eax is actually hardcoded to always be 0x539 !
● It is then multiplied by 4 and added to a constant address to lookup the fag
● We simply print out whatever is in eax at the time
● And then dereference the pointer to get the flag !

Work Journal

In GDB:

gdb-peda$ set $hardcoded = 0x539
gdb-peda$ set $index = 4*$hardcoded + 0x804a080
gdb-peda$ p $index
$1 = 0x804b564
gdb-peda$ x/xw $index
0x804b564 <strs+5348>: ​ 0x080610f0
gdb-peda$ x/s 0x080610f0
0x80610f0: "​8a1f03cbcf407a296fa0bcf149fc5879​"

This the flag was:

picoCTF{8a1f03cbcf407a296fa0bcf149fc5879}

Reflectio
n

● This challenge was hard because of the additional complexities made to
throw people like me who like to over analyse the situation off

● The following parts of the code had no influence on print_flag at all:
○ SEED_ENV being random
○ The flag being read from a file
○ The entire load_string function

● I should have focused more on reading the disassembly at the beggining
instead of being led on a wild goose chase

● I also should have been more aware that the hash string was meant to be
submitted with the flag format as well

